

RESULTS and DISCUSSION

Preprocessing: 2nd Derivative (order 2, windows 21 pt) - 5 LV CV/ vonation blinds w/ 10 colita

			TO splits.	
			Stored	
	Sensitivity (Cal):	0.922	0.950	
	Specificity (Cal):	0.950	0.922	
	Sensitivity (CV):	0.864	0.725	
	Specificity (CV):	0.725	0.864	
ł	Class. Err (Cal):	0.	0.064	
	Class. Err (CV):	0.206		
		~		

CONCLUSION

The results of this work confirm that NIRS could be a suitable tool for classifying apples according to the storage duration or conditions.

In addition Aquaphotomics has been shown to be a useful tool for understanding the phenomena that occur during the storage under controlled atmosphere. In stored fruits it seemed that the organization of water molecules involves

more hydrogen-bonded water than in fresh fruits.

Preprocessing: MSC - 12 LV

1.000

1.000

0.938

0.946

1.000

1.000

0.946

0.938

0

0.058

Sensitivity (Cal):

Specificity (Cal):

Sensitivity (CV):

Specificity (CV):

Class. Err (Cal):

Class. Err (CV):

In discriminating fresh and stored fruits both C5 and C12 water matrix coordinates, which correspond to free (S_0) and bound (v_1 , v_2) water molecules, are activate with major importance for the first . Conversely in discriminating stored fruits in different atmosphere, free water molecules showed less importance.

Differences between fresh and stored fruits activate the C7 (H_5O_2) and C9 (water trimers), water matrix coordinates; differences between fruits stored in natural or controlled atmosphere activate the C8 (water dimers) and C10 (water tetramer) water matrix coordinates.

REFERENCES

Bobelyn E., Serban A.S., Nicu M., Lammertyn J., Nicolai B.M., Saeys W. (2010). Postharvest Biol. Technol., 55, 133-143. Camps, C., Guillermin, P., Mauget, J.C. (2007).J. Near Infrared Spectrosc., 15, 169-177. Paz P., Sánchez M.T., Pérez-Marín D., Guerrero J. E., Garrido-Varo A. (2009). J Sci Food Agric, 89, 781-790. Tsenkova, R. (2009).. Near Infrared Spectrosc., 17, 303-314