Detection of Estrus in Dairy Cows by Means of Near Infrared Spectroscopy and Aquaphotomics

Go Takemura¹, George Bazar^{1,2}, Kentarou Ikuta³, Etsuji Yamaguchi³, Zoltan Kovacs^{1,4}, Yosuke Kubota⁵, Roumiana Tsenkova^{1*}

¹Kobe University, Biomeasurement Technology Laboratory, ²Kaposvar University, Institute of Food and Agricultural Product Qualification ³Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, ⁴Corvinus University of Budapest, Department of Physics and Control, ⁵Kobe University, Organization of Advanced Science and Technology *Email: rtsen@kobe-u.ac.jp

Introduction

Background

OBEUNIVER

NIRS grou

Reproduction performance of cows has declined worldwide \Rightarrow Economical loss to dairy farming

¥

Accurate detection of estrus is a basic requirement for an effective management program

Conventional estrus detection methods

Visual observation [1] Non-effective, time & labor-consuming, requiring good knowledge

Sex hormones measurement [2]

(e.g. RIA or EIA) Accurate, time & labor-consuming, producing chemical waste

To develop a new method

NIRS Rapid, easy, chemical free Aquaphotomics [3] Extract biosystem information from water spectral dynamics \Rightarrow Detection of estrus in Giant panda [4,5]

Objective of this study

To develop a method to detect estrus of dairy cows by means of NIRS and Aquaphotomics

Materials & Methods

Samples

- Aquagram
 - Star chart to visualize the relationship among the

> <u>Cows</u>

Number of cow : 7 cows (Cow A - F & G (control)) Number of lactation : cow A, G (3), D, E, F (2), B, C (1)

- J Estrus was induced by hormone treatment in Cow A F
- J Cow G got no hormone treatment and was not in estrus

Spectra Measurement

Spectrometer : XDS (FOSS)

Mode : transmittance

Temperature : serum 30 °C, milk & foremilk 40 °C

Technical Path length : 1 mm

Wavelength range : 400 - 2499.5 nm (0.5 nm step)

Consecutive scans : serum 6, milk & foremilk 3 / sample

Results & Discussion

Serum samples were obtained on day 1, 5, 6, 8 and 11 - 18

Estrus and ovulation was synchronized at the middle of the sampling period

Hormone Measurement ; Enzyme Immunoassay (EIA)

Micro plate reader : iMark (Bio Rad) Sample : serum Hormone : progesterone (P₄) (ng/mL) Cow shows estrus ca. 72 hours after

sharp decrease of P₄ concentration from high level to low one

groups of spectra of samples with high P_{4} and low P₄ at characteristic wavelengths

Formula to calculate absorbance at specific wavelengths in the aquagram

: Aquagram value at λ nm : Absorbance of a sample at λ nm $\bar{}$: Absorbance average of a group at λ nm : Absorbance standard deviation of a group at λ nm (Transform : MSC (1300-1600 nm))

Important bands of hormone investigation

- Analysis were done in 1300 1600 nm spectral range (water 1st overtone range)
- Cows and sample kinds (serum, foremilk am / pm, milk am / pm) were applied separately

\emptyset 2nd derivative Subtracted spectra

Ø Basic bands Bands proposed by R. Tsenkova [3,4,5] C1:1336-1348 nm C2:1360-1366 C3:1370-1376 C4:1380-1388 C5:1398-1418 C6:1421-1430 C7:1432-1444 C8:1448-1454 C9:1458-1468

(High P_4 period averaged spectrum) – (Low P_4 period averaged spectrum) High P_4 period : day 9 - 12 C6 C7 C9

Low P₄ day 13 - 16

Transform :

Before subtraction : SNV, Smooth (25 points) After subtraction : 2nd derivative (45 points)

Ø Regression Vector

Regression vector of PLS regression (objective variable : P_4 concentration (ng/ml))

Transform : orthogonal signal correction

P₄ changed according to hormone treatment

C11 : 1482-1495 C12:1506-1516

C10:1472-1482

Smooth (25 points) SNV (milk, foremilk)

2nd derivative (serum (cow A 25 points, other cows 55 points))

Cow G (Control) 1369 **1531.5**

1496

1460

1432⁷

1395

1397

1418.5

In all types of samples, more than half the numbers of the cows showed similar specific patterns

WAMACS [4]	Wavelength (nm)	High P₄ period	Low P ₄ period	Sample type
C1	1342 - 1344	+		F (am / pm), M (am / pm)
	1348	+		S
	1366 - 1369	+		M (am ∕ pm)
	1378 - 1380	+		S
C4	1388		+	F (am)
	1395.5		+	F (pm)
C5	1411.5	+		S
	1418.5 - 1421	+		F (pm), M (am / pm), S
C7	1432	+		All
C8	1454	+		F (am / pm), M (am), S
C9	1460 - 1465.5	+		F (am / pm), M (am / pm)
C10	1472	+		F (am / pm)
C11	1495 - 1497		+	F (pm), M (pm), S
C12	1506 - 1510.5		+	F (am / pm), M (am), S
	1515 - 1516		+	M (am), S
	1531.5		+	M (pm)
	1538		+	F (pm)

F : Foremilk, M : milk, S : Serum

1342-1472 nm (except for 1388, 1395.5 nm) : $S_0 \sim S_3$ [4] 1388, 1395.5 nm : v_1 , v_1 and v_2 After 1495 nm : S_4 and v_1 , v_2 [4]

If the two periods are compared, then in low P₄ period (estrus) the bands of strongly H-bonded water structures are dominant and signals of weakly H-bonded structures decrease.

of high P₄ period

of low P₄ period

Specific wavelength

References[1] Dochi, O., Kabeya, S., Koyama, H. (2010), Journal of Reproduction and Development 56: 561-565 [2] Saint-Dizier, M., Chastant-Maillard, S. (2012), Reproduction in Domestic Animals 47: 1056-1061 [3] Tsenkova, R. (2009), Journal of Near Infrared Spectroscopy 17: 303-314. [4] Kinoshita, K., Miyazaki, M., Vassileva, M., Tang, C., Li, D., Ishikawa, O., Kusunoki, H., Tsenkova, R. (2012), Scientific Reports 2: 856; doi:10.1038/srep00856 [5] Kinoshita, K., Morita, H., Miyazaki, M., Hama, N., Kanemitsu, H., Kawakami, H., Wang, P., Ishikawa, O., Kusunoki, H., Tsenkova, R. (2010): Analytical Methods, 2: 1671-1675. Acknowledgement We thank Awaji Agricultural Technique Center and Japan Society for The Promotion of Science (P12409) for managing experiment and financial support.