Aquaphotomics & NIR hyperspectral imaging

tools for understanding the role of water in foods

aoife.gowen@ucd.ie

School of Biosystems Engineering, University College Dublin, Ireland.

Key Questions

• What does water look like in the NIR?

• What can hyperspectral imaging show us?

 How can we use this to understand the role of water in foods?

H₂O molecule

H_2O molecule

- Nonlinear molecule: 3N-6 vibrational modes
- 3 vibrational degrees of freedom

Band locations from Chs 1 & 9 in Siesler, Ozaki, Kawata and Heise, 2002, Near-Infrared Spectroscopy: Principles, Instruments and Applications, Wiley GIFs from http://chemwiki.ucdavis.edu/Physical Chemistry/Spectroscopy/Vibrational Spectroscopy

NIR spectrum of Water

NIR spectrum of Water

Siesler, Ozaki, Kawata and Heise, 2002, Near-Infrared Spectroscopy: Principles, Instruments and Applications, Wiley

NIR spectra of Water: temperature

"Blue Shift": as T \uparrow $\lambda \downarrow$

Hydrogen Bonding

 Normal modes are perturbed when the vibrating O-H bond 'senses' another water molecule oriented so that its lone e's face H of the vibrating bond.

 Frequency of v_s decreases from 3707 cm⁻¹ in the isolated molecule to 3628 cm⁻¹ in liquid water and to 3277 cm⁻¹ in ice.

Suggested Assignments of Water Bands

Assignment	2v _s	2v _{as}
Free OH in free water molecule	1342-1383	1373-1415
Free ("Dangling") OH	1351-1392	1381-1423
H bond in dimer	1410-1453	1455-1499
H bond in trimer	1424-1467	-
H bond in tetramer	1475-1519	1533-1580

	H ₄ O						CH ₂ OH		
abe-del	r_1	Δr	$\Delta \nu / \Delta r_{\rm max}$	ν_{\pm}	dr	$\Delta \nu / \Delta \nu_{\rm max}$	ν	Δv	$\Delta \nu / \Delta \nu_{\rm max}$
Free OH in the free molecule	3725	-	-	3640	-	-	3660	-	_
Free OH in the molecule with hydrogen bonds in the other OH group	3700	25	0.06	3620	20	0.05	-	-	
Hydrogen bond in the dimer	3545	180	0.46	3435	205	0.49	3490	170	0.42
Hydrogen bond in the trimer	3510	215	0.55	-	-	—	3445	215	0.52
Hydrogen bond in the tetramer	3390	335	0.86	3260	380	0.9	3290	370	0.9
Hydrogen bond in the polymer	3335	390	1	3220	420	1	3250	410	1

Indicates blue shift of bands when less H bonding between H₂O molecules

*Observed in solid N2 matrix. Adapted from Luck, W.A.P. Infrared studies of Hydrogen Bonding in Pure Liquids and Solutions, in Franks, 1973, Water: A comprehensive treatise (Ch 4 p. 276-9) 9

Water bands in NIR

			ļ	Assignment		Min	Max				
			2	2 _{vs}		1331	1371				
			2	2V _{as} Free OH		1343	1383				
			N	/ _{as} +V _s		1349					
			2	2v _{as} Dangling O	Н	1352	1392				
Assignment	Min	Max	2	2v _{as}		1367	1408	Assignment		Min	Max
3v _s	887	1021		2v Free OH		1374	1415	2v _{as} H bond in tetr	amer 2	1475	1519
$v_{as}+2v_{s}$	895	913	2	2v Dangling OF	ł	1381	1423	2v _{as} H bond in poly	ymer 2	1500	1544
2v _{as} +v _s	903	921	2	2v_ H bond in (dimer	1411	1453	2 v _s H bond in tetra	amer 2	1534	1580
3v _{as}	911	1048		2v. H bond in t	trimer	1425	1467	2 v _s H bond in poly	/mer 2	1553	1599
				as]				
γ)	,		γ)	<u> </u>			
887-1048	3 nm			1331-	-1467	nm		1475-159	9 nm		
		1098-1	150 r	ım		144	0-1525	5 nm		1	>
		1050 1	1001			±				λ	
		/					/				
	As	ssignment	Min	Max	Assign	nment		Min Max			
	V _d	_s +2ν _s	1098	1125	2v _{ds} +v	S		1440 1502			
	Vas	s+V _{ds} +V _s	1110		2 v _s H	bond	in dime	r 1456 1499			
	2v	∕ _{as} +V _{ds}	1122	1150	v _{as} +2v	ds		1460 1525			

Aquaphotomics

Prof. Roumiana Tsenkova Kobe University, Japan

www.aquaphotomics.com

Aims to extract **water absorbance patterns** to describe biological systems e.g. animals, plants...

> How to extract water absorbance pattern (WAP) from NIR Spectrum?

Spectra of water over 1 hour at "constant" temperature of 28 °C

PC1 of water over 1 hour at "constant" temperature of 28 °C

Expt. 1: Salts in Water

Gowen et al, Talanta, 2014

Experimental Design

S. De Luca (Rome) Nicolet 6700 FT-NIR Y. Tsuchisaka (Kobe) NIR Systems 6500

Water spectra

PC 1 Water only

PC 1 Salts

PC 2 Salts

Question

How to remove effect of temperature in spectra?

• Extended Multiplicative Signal Correction!

EMSC Model

$$\text{Corrected spectrum} \longrightarrow \hat{X} = \frac{X - b_0}{b_1} - \frac{b_2 I_1}{b_1} - \frac{b_3 I_2}{b_1}$$

PC 1 EMSC Salts

LOD ~ 0.1 % (mass/mass)

How watery is food?

% water

Hyperspectral Imaging

Hyperspectral Imaging Equipment

Wavelength range (nm)	950–1650			
Spectral resolution (nm)	7			
Detector	InGaAs			

Expt. 2: Mushrooms

- 5 vibration times
- => induce surface damage
- x 24 mushrooms
- x 3 reps

Mushroom Curvature

EMSC on Mushrooms

EMSC on Mushrooms

EMSC Mushrooms: difference spectra

PC1 EMSC Mushrooms

Abs Peaks Mushroom

Free v's Bound water

- Free water: can be extracted easily from foods by squeezing or cutting or pressing
- Bound water: cannot be extracted easily
- Bound water molecules can't escape as vapor

=> Even upon dehydration food contains bound water.

Water activity

 W J Scott (1952) established that it was not water content that correlated with bacterial growth in foods, but

• Water activity: ratio of the water vapor pressure of the food to the water vapor pressure of pure water under the same conditions

Moisture Content Vs Water Activity

http://vssweb1.landfood.ubc.ca/courses/fnh/301/water/wprin.htm

Expt 3. Aqueous solutions

- Transflectance Cell
- 300 µL
- Aqueous solutions:

Salt	Aw
LiCl	0.25
LiCl	0.5
NaCl	0.76
NaCl	0.92
KCI	0.98
W	1

Mean Sample Spectrum

No pretreatment

EMSC

Difference Spectrum (EMSC (Water -))

Difference Spectrum EMSC Aw > 0.5

0.0

0.5

Aw

1.0

Wavelength (nm)

Difference Spectrum EMSC Aw<=0.5

Expt. 4: Water temperature

Heating wire

Glass slide

- 1ml water pipetted on ceramic tile
- heating wire placed through centre of drop
- Glass slide placed on top =>thin layer of water
- Heating wire switched on
- Images obtained every minute for a total of 15 mins.

Expt. 2: Water temperature

PC 1 EMSC

Absorbance at PC1 peaks

PC1 Score images

Expt. 5: Hydration of Dry foods

AW/MC Wafer

AW/MC Coffee

Soybean

Correlation between Aw, MC: wafer

Correlation between Aw, MC: coffee

Correlation between Aw, MC: soybean

PC 1 EMSC Spectra

Difference EMSC (subtracting T0) Wafer

Wafer: PC1 EMSC loading

PC1 EMSC Wafer

Abs Peaks Wafer

Difference EMSC (subtracting T0) Coffee

Coffee – PC1 EMSC loading

PC1: EMSC Coffee

Abs Peaks Coffee

Difference EMSC (subtracting T0) Soybeans

Soybean: PC1 EMSC loading

PC1 EMSC Soybean

Abs Peaks Soybean

Key Questions

• What does water look like in the NIR?

• What can hyperspectral imaging show us?

 How can we use this to understand the role of water in foods?

Acknowledgements

European Research Council

