

# Aquaphotomics and its extended water mirror concept explain why NIRS can measure low concentration aqueous solutions



George Bázár,<sup>1,2,\*</sup> Zoltán Kovács,<sup>1,3</sup> Mariko Tanaka,<sup>1</sup> Roumiana Tsenkokva <sup>1,\*</sup>

<sup>1</sup> Biomeasurement Technology Laboratory, Graduate School of Agriculture, Kobe University, Japan

<sup>2</sup> Institute of Food and Agricultural Product Qualification, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Hungary <sup>3</sup> Department of Physics and Control, Faculty of Food Science, Corvinus University of Budapest, Hungary

## INTRODUCTION

Low concentration aqueous solutions  $\rightarrow$  low spectral intensity of solutes

**BUT!** 

The molecular changes of the water solvent caused by the solute can be detected by NIR spectroscopy and used for qualitative and quantitative analyses [1]



Structural changes of water

S

in sugar solutions

presented on

Measuring low concentration of sugar in aqueous solutions based on the molecular changes of water [2]



### **MATERIALS AND METHODS**

- Analytical grade lactose  $\rightarrow$  diluted in Milli-Q water

Raw spectra

RESULTS

2nd derivative spectra

Signals of lactose can hardly be detected

0.02-0.1mM range, with 0.01mM steps 0.1-1mM range, with 0.1mM steps 1mM-10mM range, with 1mM steps 10mM-100mM range, with 10mM steps

- Four independent replicates were prepared for each concentration range

- FOSS XDS spectrometer (FOSS NIRSystems, Inc., Hoganas, Sweden) with RLA module and 1mm cuvette  $\rightarrow$  transmittance spectra (logT<sup>-1</sup>) at 1100-1800nm with 0.5nm spectral step

- R Project (www.r-project.org), The Unscrambler v9.7 (CAMO Software AS, Oslo, Norway), Pirouette 4.0 (Infometrics, Inc., Woodinville, WA, USA)

Means and standard deviations of PLSR results on lactose concentration in the four replicate solutions (n = ca.30) at the different concentration ranges, applying different spectral regions

|                    |                               | 10-100mM  | 1-10mM    | 0.1-1mM   | 0.02-0.1mM |
|--------------------|-------------------------------|-----------|-----------|-----------|------------|
| <b>1100-1800nm</b> | factor#                       | 3         | 3         | 4         | 1.75±1.5   |
|                    | R <sup>2</sup> <sub>Cal</sub> | 0.99±0.00 | 0.99±0.01 | 0.84±0.12 | 0.72±0.09  |
|                    | RMSEC                         | 0.99±0.06 | 0.34±0.06 | 0.11±0.04 | 0.02±0.01  |
|                    | R <sup>2</sup> <sub>CV</sub>  | 0.99±0.00 | 0.97±0.02 | 0.48±0.27 | -1.17±0.46 |
|                    | RMSECV                        | 1.34±0.22 | 0.48±0.13 | 0.19±0.05 | 0.03±0.00  |
|                    | RPD <sub>CV</sub>             | 22.63     | 6.33      | 1.56      | 1.05       |
| <b>1300-1600nm</b> | factor#                       | 3         | 3         | 3.75±0.5  | 1.75±1.5   |
|                    | R <sup>2</sup> <sub>Cal</sub> | 0.99±0.00 | 0.99±0.01 | 0.80±0.15 | 0.68±0.09  |
|                    | RMSEC                         | 0.99±0.07 | 0.34±0.07 | 0.13±0.07 | 0.02±0.01  |
|                    | R <sup>2</sup> <sub>CV</sub>  | 0.99±0.00 | 0.97±0.01 | 0.33±0.33 | -0.91±0.70 |
|                    | RMSECV                        | 1.34±0.23 | 0.48±0.12 | 0.22±0.05 | 0.03±0.00  |
|                    | RPD <sub>CV</sub>             | 22.59     | 6.37      | 1.37      | 1.07       |

aquagram Regression vectors of calibration models built on the



 $H^{+}(H_2O)_{4-8}$ 

1344nm

1590nm

 $H^{+} (H_2 O)_{2,6}$ 

1506nm

 $H^{+} (H_2 O)_{2,6}$ 

**Characteristic changes at** water matrix coordinates describe the water spectral pattern of lactose.

> Visualization on aquagram [3]:

PLSR results on lactose concentration at the different concentration ranges using the four replicate solutions together (n = ca.120), applying different spectral regions and 'leave one replicate out' cross-validation

|                    |                              | 10-100mM | 1-10mM | 0.1-1mM | 0.02-0.1mM |
|--------------------|------------------------------|----------|--------|---------|------------|
| <b>1100-1800nm</b> | factor#                      | 3        | 3      | 3       | 1          |
|                    | $R^2_{Cal}$                  | 0.99     | 0.98   | 0.35    | 0.07       |
|                    | RMSEC                        | 1.03     | 0.40   | 0.23    | 0.03       |
|                    | R <sup>2</sup> <sub>CV</sub> | 0.99     | 0.98   | 0.24    | -0.1       |
|                    | RMSECV                       | 1.08     | 0.42   | 0.25    | 0.03       |
|                    | RPD <sub>CV</sub>            | 27.94    | 7.19   | 1.23    | 1.15       |
| <b>1300-1600nm</b> | factor#                      | 3        | 3      | 3       | 1          |
|                    | $R^2_{Cal}$                  | 0.99     | 0.98   | 0.33    | 0.05       |
|                    | RMSEC                        | 1.04     | 0.40   | 0.23    | 0.03       |
|                    | R <sup>2</sup> <sub>CV</sub> | 0.99     | 0.98   | 0.23    | -0.04      |
|                    | RMSECV                       | 1.08     | 0.42   | 0.25    | 0.03       |
|                    | RPD <sub>CV</sub>            | 28.04    | 7.13   | 1.22    | 1.15       |
|                    |                              |          |        |         |            |

subtracted spectra of water and lactose solutions show stability among replicate measurments, and accentuate the dominant water regions.





1364nm

OH- $(H_2O)_{1,2,4}$ H<sup>+</sup>· $(H_2O)_2$ 

1380nm

 $O_2 - (H_2 O)_4$ 

OH-(H<sub>2</sub>O)<sub>1,4</sub>

#### **CONCLUSIONS**

NIR technique coupled with aquaphotomics concept is useful method for quantification of the investigated carbohydrate solutes at millimolar level.

Lactose causes gradual changes in the water molecular matrix, thus, performance of calibration on lactose concentration does not decrease when only the characteristic spectral region of water 1st overtone (1300-1600nm) is applied.

In the contrary, it has been demonstrated in the present study that the absorption regions of water provide most useful information on the solutes in case of highly diluted aqueous solutions.

#### **REFERENCES & ACKNOWLEDGEMENTS**

[1] Tsenkova, R., 2009. Journal of Near Infrared Spectroscopy, 17, 303-314. [2] Giangiacomo, R., 2006. Food Chemistry, 96, 371-379. [3] Tsenkova, R., 2010. Spectroscopy Europe, 22, 6-10. Financial support of Japan Society for Promotion of Science (G.B. JSPS P12409) is acknowledged.

Accordingly, the molecular changes of water caused by the solute can be traced and used for describing the amount of dissolved material.

NIR technique and aquaphotomics based on the extended water mirror concept provide a quick and accurate alternative for classical analytical measurements even at very low (1-10mM) concentration levels.

\* To whom correspondence should be addressed E-mail: bazar@agrilab.hu (G.B.); rtsen@kobe-u.ac.jp (R.T.)