

NIR detection of honey adulteration reveals differences in water spectral pattern

George Bázár^{1,2,*}, Róbert Romvári², Tamás Somogyi², Viktória Éles², Roumiana Tsenkokva^{1,*}

¹ Biomeasurement Technology Laboratory, Graduate School of Agriculture, Kobe University, Japan

² Institute of food and agricultural product qualification, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Hungary

INTRODUCTION

Unifloral False Acacia (Robinia pseudoacacia) honey (liquid due to the high fructose content, very light colored and flavored) may easily be adulterated with high-fructose corn syrup (HFCS), negatively influencing market growth by damaging consumer confidence [1].

Aquaphotomics considers water as a multi-element system that can be described by its multi-dimensional NIR spectra. Since water's H-bonds are present in most natural samples, this analytical approach, using perturbed water in different environments as a mirror for the rest of the molecules in the sample, can be effectively applied to various fields [2].

OBJECTIVE

- Developing an applicable NIR model for screening the adulteration of unifloral Robinia honey using fiber-optic probe.
- Applying recent findings of aquaphotomics to interpret the chemometrics calibration models for measuring the level of fructose syrup adulteration.
- Extracting important information about the functionality of Robinia honey related to its water structures.

MATERIALS & METHODS Pure *Robinia* honey samples

(A) Regression vectors of PLSR models with (B) the results of calibrations and cross-validations on purity (honey percentage against HFCS) of adulterated honey samples.

Characteristic changes at water matrix coordinates describe the water spectral pattern.

Visualization with aquagrams [3]:

- from four geographic regions of Hungary - in different periods of False Acacia blossom in 2012.

> Honeys HFCS

Isoglucose syrup (High Fructose Corn Syrup, HFCS)

- from high-temperature closed process,
- liquid, cleaned, sterile, ion exchanged and filtered - 40% fructose , 33% glucose.
- Individual honey samples were diluted with HFCS - random concentrations (n = 40) - range of honey content = 100-60% (honey content mean \pm SD = 80.79 \pm 12.89)
- FOSS NIRSystems 6500 spectrometer (FOSS NIRSystems, Inc., Laurel, MD, USA)
- OptiProbe fiber optic immersion sampling unit, with 2mm layer thickness
- Transflectance spectra, 1100–1800 nm, 2nm step
- Scanning in two rounds, on two successive days
- In random order in both rounds

HONEY H1 93% 1500-1504nm 1434-1436nm H1 86% 1464-1472nm H1 61%

(A) Aquagram of the investigated pure *Robinia* honeys and HFCS presenting water spectral pattern. (B) Aquagram of adulterated mixtures of one honey (H1-purity%) plotted with the mean graph of the pure honeys and graph of HFCS.

- Six consecutive spectra for each sample at each time - Total number of scanned samples: n = 41 - Total number of stored spectra: n = 492

- Data processing with The Unscrambler 9.7 (CAMO Software AS, Oslo, Norway) and MSOffice Excel 2010 (Microsoft Co.)

REFERENCES

[1] Mehryar, L., & Esmaiili, M., 2011. 11th International Congress on Engineering and Food, Athens, Greece

[2] Tsenkova, R., 2009. Journal of Near Infrared Spectroscopy, 17, 303-314.

[3] Kinoshita et al., 2012. Scientific Reports, 2, 856; DOI:10.1038/srep00856

* To whom correspondence should be addressed: E-mail: bazar@agrilab.hu (G.B.); rtsen@kobe-u.ac.jp (R.T.)

SUMMARY & CONCLUSIONS

- Quick analytical tests were developed for detecting HFCS adulteration of *Robinia* honeys. The most accurate NIR models for predicting adulteration level with the lowest cross- \bullet validation error (RMSE_{cv} = 1.48%) were achieved within the whole spectral range of 1300-1800nm, containing the absorption bands of both water and carbohydrates.
- Investigated unifloral *Robinia* honeys contained larger amount of water having highly organized molecular structure, than industrial sugar syrup (HFCS).
 - larger variety of molecules dissolved in the multicomponent system of honeys
 - simpler matrix of HFCS has relatively large amount of unstructured water
- Adulteration caused gradual reduction of water trimers, molecular structures facilitating the interactions with other molecules.