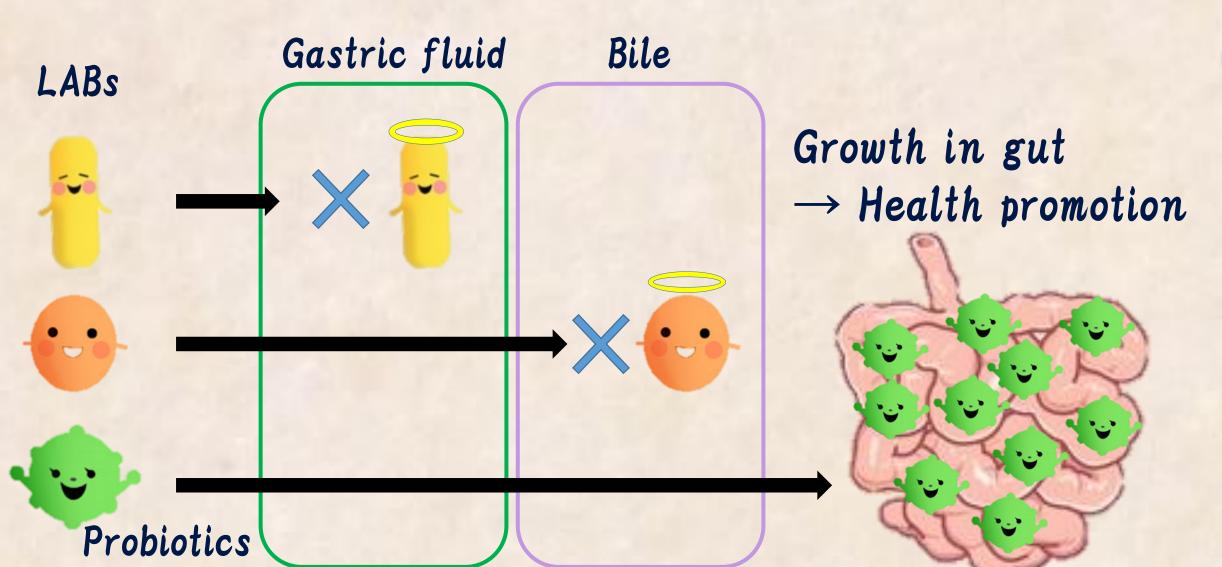
Near Infrared Spectroscopy (NIRS) and Aquaphotomics for Understanding Probiotic Lactic Acid Bacteria (LAB)

Haruki Koshiba', Aleksandar Slavchev², Zoltan Kovacs', Airi Nagai', Roumiana Tsenkova^{1*} 1 Kobe university, Japan, 2 University of Food Technologies, Bulgaria, * E-mail: rtsen@kobe-u.ac.jp



0 Introduction

Probiotics: Live micro-organisms which, when administered in adequate amounts, confer a health benefit on the host [1]

Conventional determination of tolerance to digestive fluids Genetic method [2] in vitro method [3] Simulated gastric fluid and gall Monitoring of optical density at 665 nm Expensive, time-consuming,

NIRS Cost-effective, rapid, easy to measure, no difficult sample preparation

Aquaphotomics [4]

By measureing water, bacterial information can be acquired. Probiotics can be separated from others by its specific water structure.

Objective: To show possibility to classify LAB according to its tolerance to digestive fluids using NIRS and Aquaphotomics

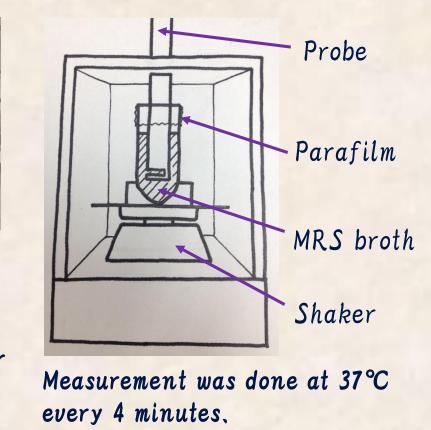
special knowledge and skills

O Materials & Methods

1 in vitro test and classification of tolerance as below Probiotic (PB): tolerant to digestive fluids

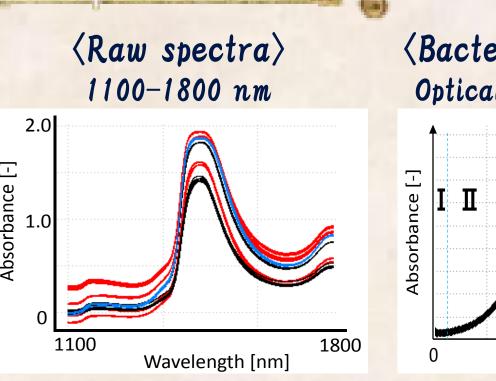
Moderate (M): which have moderate character Non-probiotic (NPB): intolerant to digestive fluids

Non-probiotic (NP	B): intolerant to digestive	e fluids L.: Lactobacillus		
Ctuoina	Recovery after 3h at low pH and Pepsin	Gall		
Strains	Recovery	Minimal Inhibitory		
	(yield of biomass) [-]	Concentration (MIC) [mg/ml]		
L. bulgaricus: S6	0.062	1.25		
L. gasseri: S20	0.191	2.50		
L. bulgaricus: Y12	0.046	0.625		
L. bulgaricus: S2	0	0.156		
L. bulgaricus: S3	0.011	0.313		
L. bulgaricus: S9	0	0.156		


S6, 20, 2, 3, 9 strains were provided from Selur Pharma Ltd. (Bulgaria) Y12 strain was isolated from a yogurt produced in Japan.

Simulated gastric fluid: HCl (0,2 M), NaCl (0,08 M), Pepsin (9000 U/mL) Simulated gall: repetition of double fold dilutions from 5 mg/mL solution

2 NIRS measurement in the process of bacteria pure culture



Wavelength: 400-2500 nm Step: 0.5 nm Module: Optiprobe Analyzer Mode: Transflectance Pathlength: 1.0 mm

3 Investigation of correlation between in vitro test and NIRS data using Chemometrics and Aquaphotomics approach

O Analysis

(Bacteria growth curve) Optical density at 665 nm Time [min.]

Phase definition

I: Lag phase

II: Transitional phase

II: Log phase

IV: Transitional phase

V: Stationary phase

1100-1800 nm is strongly absorbed by water molecules and enables Aquaphotomics to be more supportive of results.

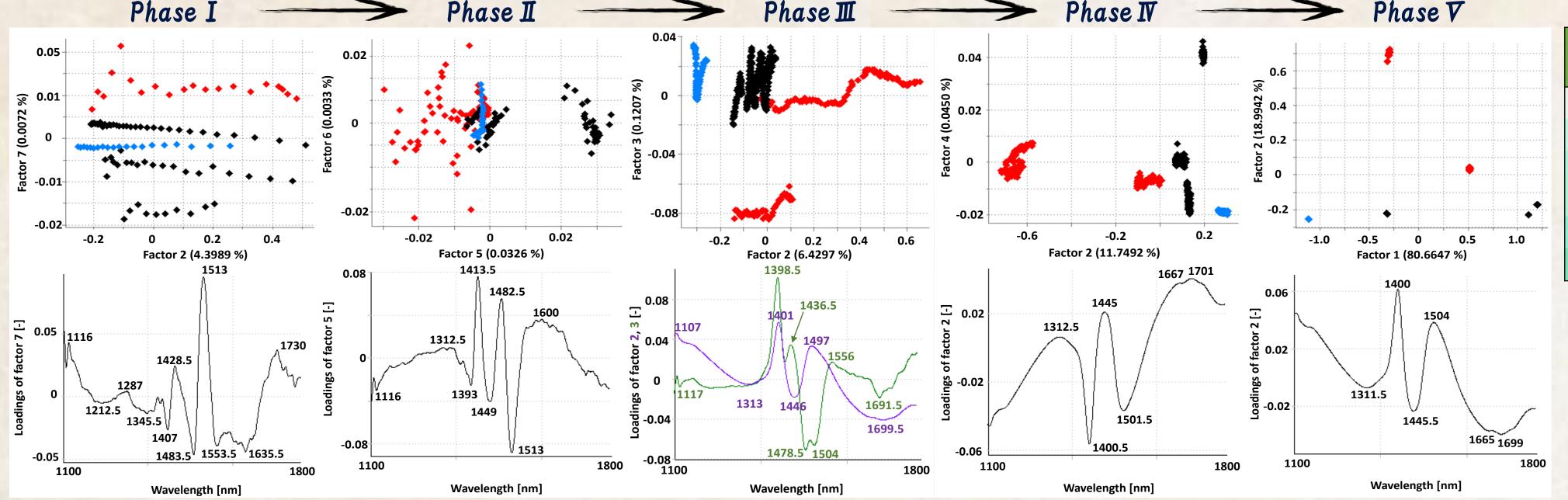
(i) PCA on each growth phase Preprocessing: mean centering Transformation: MSC

To check the separation of probiotic LAB from others and find wavelengths effective for the separation

(ii) Aquagram based on tolerances

 $A=\frac{a-\mu}{a}$

A = Aquagram value


a = absorbance after MSC of all group spectra $\mu = average \ of \ all \ spectra \ in \ a \ group$

 $\sigma = SD$ of all spectra in a group

Visualization of differences between tolerances

O Results & Discussions

PCA scores and loadings separating probiotic LABs from others (Color in plots: PB, M, NPB)

Characteristic common water peaks Wavelength [nm]

	Phase	(Variance)						
ı			(a)	(b)	(c)	(d)	(e)	(f)
	I	7 (0.0072 %)	1116, +					
	I	5 (0.0326 %)	1116, +	1312.5, -				
	Ш	2 (5,4297 %)		1313	1401	1446		1699.5
		3 (0,1207 %)	1117				1504	
	IV	2 (11,7492 %)		1312,5, -	1400.5, +	1445, -	1501,5, +	1701, -
	7	2 (18,9942 %)		1311,5, -	1400, +	1445.5, -	1504, +	1699, -

(a) H₁₃O₆⁺, H-bonded OH str., K. Mizuse

(b) Unknown

(c) $H_5O_2^+$, asymmetric str., R. Tsenkova

(d) H₂O, symmetric str. + asymmetric str., R. Tsenkova

(e) H₂O, symmetric str., Y. Ozaki

 $(f) O_2^- \cdot (H_2O)_4$, J. M. Weber

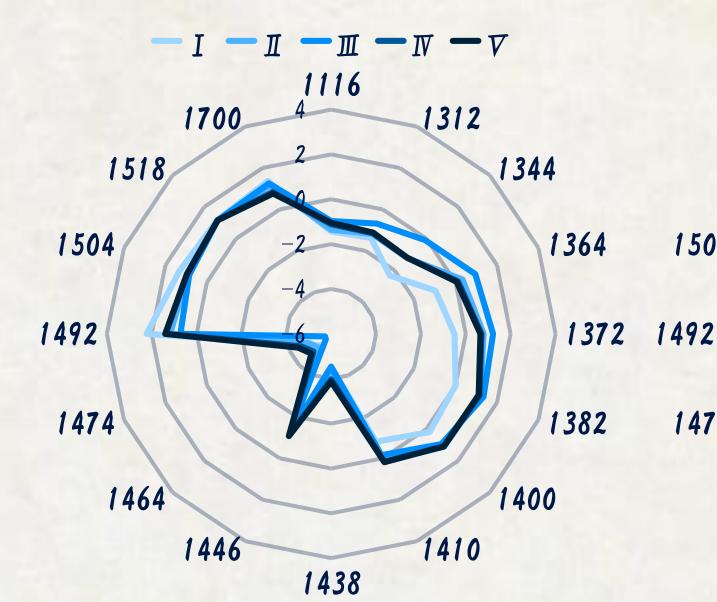
-. Separation of probiotics becomes easier with phase advancement.

=. Protonated water can have positive correlation to probiotic character and superoxide tetrahydrate can have negative correlation.

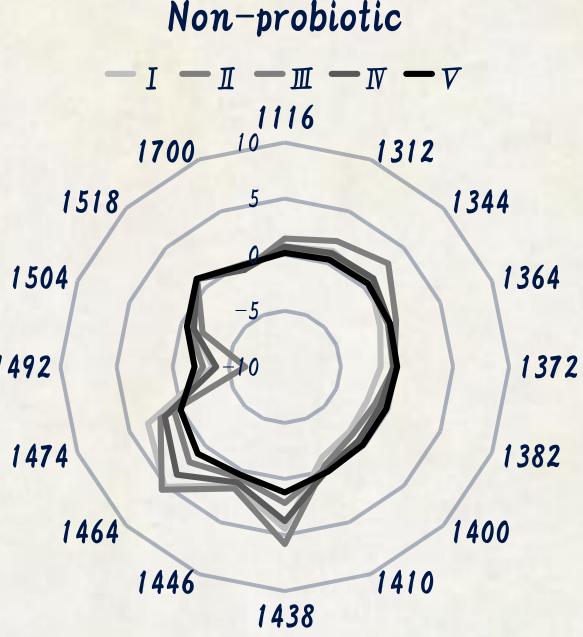
Probiotic

Aquagrams showing different patterns in terms of the tolerance to digestive fluids

-. Three different groups of LAB show different specific water spectral pattern.


=. Interaction of probiotic LAB with water molecules is different from phases.

 Ξ . Moderate LABs interact especially with S_0 and S_4 .


 \square . Non-probiotic LABs interact especially with S_1 , S_2 , S_3 . S: a water molecule which has i hydrogen bonds

> 1492 Band Assignment in WAMACS [4] 1344 nm: v 3, 1364 nm: water shell $1372 \text{ nm}: \nu 1 + \nu 3$ 1382 nm: water shell, superoxide 1410 nm: S₀, 1438 nm: S₁, 1464 nm: S₂ 1474 nm: S₃, 1492 nm: S₄, 1518 nm: v1, v2

Moderate

* Wavelengths were selected based on WAMACS [4] and specific wavelengths written above.

O Conclusions

It is possible to classify LAB according to its tolerance to digestive fluids using NIRS and Aquaphotomics, Our result shows possibility of shortening the process of selection of probiotics.

O References

[1] FAO/WHO (2002), Joint Working Group Report on Drafting Guidelines for the Evaluation of Probiotic in Food, London, Ontario, Canada, April 30 and May 1,

[4] R., Tsenkova, Introduction Aquaphotomics: Dynamic Spectroscopy of Aqueous and Biological Systems Describes Peculiarities of Water. J. Near Infrared Spectrosc., 17, 303-313 (2009)

[2] T. R. Klaenhammer et al., Selection and Design of Probiotics. International Journal of Food Microbiology, 50, 45-57 (1999)

[3] I. Pitino et al., Survival of Lactobacillus rhamnosus Strains in the Upper Gastrointestinal Tract. Food Microbiology, 27, 1121-1127 (2010)