

Water Infrared Spectrum at the interface with silicon and hydrogenterminated silicon surfaces using molecular dynamics approach

José Ángel Martínez-González, PhD

School of Biosystems & Food Engineering

AQUAPHOTOMICS: UNDERSTANDING WATER in BIOLOGY 2nd INTERNATIONAL SYMPOSIUM

Biowater Project

ñ D

Overview

1. Bunkin, N., Ignatiev, P., Kozlov, V., Shkirin, A., Zakharov, S., Zinchenko, A. (2013) 'Study of the Phase States of Water Close to Nafion Interface', *Water*, 4(Mauritz 2004), 129–154

Biowater Project

Simulation of water in heterogeneous environments

Simulation liquid, supercooled and ice water

Theoretical Background

Water Model Parameters

	SPC/Fw ¹
r(OH) <i>,</i> Å	1.012
HOH, deg	113.24
Ka·10 ⁻³ , kcal·rad ⁻² ·mol ⁻¹	75.90
Kb, kcal·Å ⁻² ·mol ⁻¹	1059.162
q(O)	-0.82
q(H)	0.41
σ(OO) <i>,</i> Å	3.165492
ε(OO), kcal·mol⁻¹	0.1554253

1. Y. Wu, H. L. Tepper and G. A. Voth, Flexible simple point-charge water model with improved liquid state properties, J. Chem. Phys. **124** (2006) 024503

Theoretical Background

Water-Ice VACF

ICE (220K)

* * *

Water-Ice IR

H₂O (220K) ICE (220K) H_{2} 100 80 Intensity (arb. units) 60 -40 20 1500 2000 2500 3000 3500 4000 4500 500 1000 4000 4500 1500 2000 2500 3000 3500 4000 4500 wavenumber (cm⁻¹) wavenumber (cm⁻¹) wavenumber (cm¹) Ice (220K) H₂O (220K) H₂O (300K) 3696-3600 3696-3600 3639-3544 n-sym) 1443-1490 1481 1481

Simulation of water in heterogeneous environments

Simulation water silicon interface

Water Silicon Interface

Water Silicon Interface VACF

* * *

Theoretical Background

Simulation of water in heterogeneous environments

Simulation hydrogen-terminated silicon water interface

Water Silicon-Hydrogen Interface

UCD

Water Silicon-Hydrogen Interface

Final Remarks

Liquid, Supercooled and Ice Water Simulations:

- Differences in librational bands for VACF and IR
- Movements to lower wavenumbers when ways acquires structure.

Silicon with Water System:

- Density water variation along Z axis gives the different solvation layers.
- 1st solvation is bigger for Hydrogen terminal surface. Hydrophobic effect

Final Remarks

Silicon with Water System:

- 1st solvation layer power spectra after 200ps show some water organisation similar to ice water.
- 1st solvation IR spectra, achieved through the electrical flux-flux approach, confirms the organisation of water in a halfway between liquid and ice water.

Future plans:

- Simulation Silver Silver
- water interface

Acknowledgments

* * *

Thanks for your attention

