Water Biology and Mediicne: from aquaporins to aquaphotomics

Masato Yasui, MD, PhD Dept. of Pharmacology Keio School of Medicine

Water permeabilities of plasma membrane vesicles

Membrane	P ₁ (µm/s)	E _A (kcal/mol)	Mercurial sensitivity	Refer
Planar lipid bilayer	1 -104	10.8-14.9		[25]
Toad bladder apical membranes		11.0	-	[24]
(-ADH)	· // · · ·	6.27		- ¹
Hog gastric vesicles	2.8	15.1		[26]
Human placenta	19	13.9	· _ · · · ·	[27]
Brain synaptosomes	45	18		[22]
Rat small intestine	60	13.3	~	1211
Rabbit proximal tubule	166	n.d.	/+	[28]
Rabbit crythrocytes	530	4.6	+	[29]
Rat proximal tubule	760	3.1	+	[30]
Toad bladder apical membrane	450	n.d.	$\left(+ \right)$	[23]
Pat callering	200	10 .		1211
duct endosomes		J.0	n.a.	[31]
Toad bladder endosomes	1000	3.9	+	[32]

Transmembrane water permeability Bilayer Diffusion Water Channels

All biological membranes Low capacity No known inhibitors E_a 10 kcal/mol

Renal tubules, secretory glands, red cells High capacity for H_2O , not H_3O^+ Reversibly inhibited by Hg⁺⁺ E_a 5 kcal/mol Discovery of Aquaporin-1 Functional expression

Hypo-osmolar swelling Hg⁺⁺ inhibited, no currents Preston *et al., Science* 1992

Human Aquaporin Repertoire

Body Distribution of Aquaporins

Aquaporin (AQP)	Tissue or Cell Type
AQP0	Eye (Lens)
AQP1	Choroid Plexus, Erythrocytes, Eye (Cornea), Gallbladder, Kidney, Lung, Liver, Pancreas
AQP2	Kidney
AQP3	Erythrocytes, Eye (Conjunctiva), Kidney, Skin, Upper Respiratory Tract
AQP4	Brain (Glial Cells), Eye (Retina), Kidney, Muscle
AQP5	Lacrimal Gland, Lung, Salivary Gland, Skin (Sweat Glands)
AQP6	Kidney
AQP7	Adipocytes, Kidney, Testis
AQP8	Colon, Kidney, Liver, Pancreas
AQP9	Brain, Leukocytes, Liver, Spleen
AQP10	Small Intestine

Source: Masato Yasui, MD, PhD/Johns Hopkins Medicine

(Yasui, JAMA, 2004)

AQP2—A regulated water channel

cDNA cloned by homology

(Fushimi et al., Nature, 1993)

AQP2 localization in kidney

(Nielsen et al., Proc Natl Acad Sci, 1993)

AQP2—Acute regulation by AVP

Isolated renal collecting ducts

Inherited defects (rare) Nephrogenic DI (severe) Acquired defects (very common) Overexpression—Fluid retention Underexpression—Enuresis

AQP0 and Cataracts

Major intrinsic protein (MIP) Lens fiber cells

Importance in neonatal lens development?

Human AQP0 mutations Congenital cataracts Dominant inheritance T138R—Multifocal opacities E134G—Unilamellar cataract

Berry et al., Nature Genetics, 2000 Francis et al., Human Mol Genetics, 2000

Coherent anti-Stokes Raman scattering (CARS)

Imaging specific molecular vibration

Energy diagram for OH CARS

Raman shift for OH-stretch vibration= 3200 cm⁻¹

Detection of H_2O , but not D_2O (deuterium oxide)

Experimental procedure for flushing isotonic D₂O/HBSS

Frame by frame pictures of H_2O efflux from single cell

Structure and Function

The Nobel Foundation (2003)

http://www.ks.uiuc.edu/Research/aquaporins/

SIMCA (1300-1600nm, transform : MSC)

(Tsenkova & Yasui, unpublished)

Difference spectra from Wild type

Difference spectra WT (AQP4⁺) – KO (AQP4⁻)

AquaGram of difference spectra (WT-KO)

Difference spectra WT and KO was indicated the positive band around 1409nm and negative band around 1491nm (left figure). (right figure). AquaGram of Difference spectra WT (AQP4+) and KO (AQP4-) (right figure). These data shown the increased

Effects of AQP expression on cryopreservation

(Kato et al., PLoS One, 2014)

Anti-freezing effects of AQP

(Kato et al., PLoS One, 2014)

Aquaphotomics Team at Keio Univ. : from basic to clinical applications

Project leader: Dusan Kojic

KEIO Aquaphotomics projects: from basic to clinical application

by Nakajima and Kojic

Ab-initio or flexible MD simulation

1000

2000

Wavenumber(cm^{-1})

3000

4000

by Tomobe, Nakamura and Yasuoka

by Tanaka, lijima, et al.

Prediction of ovulation in Panda : Kinoshita et al. Sci. Rep. 2012

Prediction of Ovulation in Women

10 healthy women

Diagnosis of Prostate Cancer

Biomarkers : 1. Plasma PSA 2. Urine PCA

200 urine samples have been collected and analyzed from patients whose PSA is between 4 and 20, and taken biopsy at Keio Hospital

By Kojic, Tanaka, Iijima, etc.

(Unpublished)

Dept. of Pharmacology, Keio Univ. School of Medicine