Demonstrations of new tools for spectral data analysis \& NIRS of Waters (treated with Magnetic Fields)

Bernhard Pollner, Zoltan Kovacs

Aquaphotomics: Understanding Water in the Biological World at the 5th Kobe University Brussels European Center Symposium 14th October 2014, Brussels, Belgium

Outline \& Resume

R-Package .,Aquaphotomics"

- Experiment-design, Data-Import, Data-Analysis
- Prelim. Results:
- distinguish between different water species
- show effect of different magnetic treatments of water

Online .,Aquagram-Maker"

- upload data to make Aquagram
- easy and fast
the universal input, checking for the class of the input-object
if (class(ObjectToPickPeaks) == "mvr") \{
allColNames <- colnames(ObjectToPickPeaks\$coefficients[,,1:Objer"
lastName <- allColNames[length(allColNames)]
if (!is.character(lastName)) \{ \#\# problem if there is comnonont _ we wot get a name bac
lastName <- "1 comps"
\}
mat <- ObjectToPickPeaks\$coefficients[,, ObjectToPickPea
dfToPickPeaks <- data.frame(X=mat)
colnames(dfToPickPeaks) <- lastName
\}
if (class(ObjectToPickPeaks) == "PCA") \{
dfToPickPeaks <- as.data.frame(ObjectToPickPeaks\$loadings[, comps])
\}
if (class(ObjectToPickPeaks) == "data.frame") \{
dfTnDickPeakc , nhiectToPickPeaks
\}
pickF
EOF
Pick!
„,Aquaphotomics"
a
a <-
b <-
wave
res
a very brief introduction
colp
colNeg <- stngs $\$ c o l N e g P e a k s$
positionTable <-res[1: (nrow(res)/2) ,]
heigthTable <-res[((nrow(res)/2)+1):nrow(res) ,]
Yrange <- range(pickResults\$rawVector)[2] - range(pickResults\$rawVector)[1]
onSub <- paste(onSub, ", bw=", pickResults\$picks\$pickWindow, sep="")

About R

What is R?
Contributors
Screenshots
What's new?
Download, Packages

CRAN

R Project

Foundation
Members \& Donors
Mailing Lists
Bug Tracking
Developer Page
Conferences

Search

Documentation

Manuals
FAQs
The R Journal
Wiki
Books
Certification
Other

Misc

Bioconductor
Related Projects
User Groups
Links

Getting Started:

- R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.
- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News :

- \mathbf{R} version 3.1.1 (Sock it to Me) has been released on 2014-07-10.
- \mathbf{R} version 3.0.3 (Warm Puppy) has been released on 2014-03-06.
- The R Journal Vol. $5 / 2$ is available.
- useR! 2014, took place at the University of California, Los Angeles, USA June 30 - July 3, 2014.
- useR! 2015, will take place at the University of Aalborg, Denmark, June 30 - July 3, 2015.

Why R-Project ?

- high level programming language
- open source - freeware!
- cross-platform
- powerful - extendable
- possible: something really new
- widely used in academia

R-Package „Aquaphotomics"

Experiment Design

- randomize samples
- facilitates time resolved experiments

Data Import

- e.g. straight from binary (.da) file
- controlled source and structure for class- and numerical variables
Data Analysis
- easy splitting and grouping of data
- parallelization of different data pre-treatments
- tools to compare those parallel results

Data Import

- standardized data

 structure- encapsulated and „transportable" colorcoding
- nice to look at:
view of NIR-data is minimized (but of course still possible)
- (regress on absTime)

Data Analysis

- splitting / slicing / grouping of data
- recyclable, separate data-analysis procedure file
- strict separation of calculations and plotting
- customizable parallel processing (fa aplicable; on UNIX)
- various methods implemented
- and much more already on the „list"

\underline{s} groupAvgoutuau	
Sc plotAquagram	
sc : plotCompScores	
sc e plotCompScores simple	
\underline{s} c c plotGroupAvgSubtract	
S sc plotPCAScores	
$\underline{\text { s }}$ re plotRaw	
s Irc plotRMSEx	
\% c plotSimcaClassDist	
¢ - plotVector	
su c plotVectorCollection	
scrc printSvmTable	
s'rc showGroups	
electWLs	
iowAllClassRepresentations	
10wSingleClassRepresentation	
	nca mmp
	litSequence

Data Analysis - Implemented Methods

Data Pre-Treatment

- smoothing \& derivatives, SNV, MSC, EMSC
- special Aquaphotomics data pretreatments (parallelized)
sdre ralc nint ina
Irc groupAvgSubtract
s irc plotAquagram
Evaluation / Analysis:
- subtractions in
raw-spectra
- PCA, PLSR
- SIMCA
- (SVM, bootstrap, ...)
- Aquagram!

Calculate and / or nlot n n anc... 1An
Subtractions in raw-spectra
Plot an Aquagram
Plot comparison scores; advanced grouping
Plot comparison scores; simple grouping
Plot averaged subtracted spectra
Plot PCA scores
Plot Spectra
Error / calibration / validation plots of PLSR models
Plot SIMCA interclass distances (sdrc)
Plot Vector
Plot Vector Collection
Classify using Support Vector Machines
Show SDRC set by grouping
Select Wavelengths
Show the character representation of a factor
Show the character representation of a factor
Plot SIMCA interclass distances (dataset)
Manually split within sequence
Select observations (rowe) ano....

R-Package „Aquaphotomics"

- fully scriptable analysis routines
- consisting of (user's) custom code, and
- easy-to-use analysis modules
- same analysis of an exact repetition of a previous experiment can so be done in a few seconds - just by plugging new data into the old (copied) analysis routine

Think - Copy\&Paste - Enjoy

Preliminary Results

Different Water Species

Spectrometer:

- FOSS XDS
- transmittance, pathlength $=1 \mathrm{~mm}$
- $400 \mathrm{~nm}-2500 \mathrm{~nm} ; \Delta=0.5 \mathrm{~nm}$
- $\mathrm{T}=28.6^{\circ} \mathrm{C}$
- up to 5 different water species
- MilliQ as standard
- Abbreviations showing origin of water
- StU: St. Ulrich
- Ob: Oberndorf
- MQ: MilliQ
- Analysis in Ist overtone of $\mathrm{OH} /$ water (1300-1600nm)

3(4) Different Water Species - no Treatment

Fusion-AllWaters no Treatment, ProxCuv@1300-to-1600

- raw spectra

3(4) Different Water Species - no Treatment

3(4) Different Water Species - no Treatment

- MQ
- StU
- Ob
- MQs

PCA:

- single water species PC3:0.127\% PC4:0.030\%

Loadings

ProxCuv@1300-to-1600

no treatment PCA , bw=25,2 PCs for 99\% var.

SIMCA - Interclass Distances

no Treatment ProxCuv@1300-to-1600

observe:

- MQs and MQ same water in different containers

SIMCA - Interclass Distances

no Treatment ProxCuv@1300-to-1600

Ob / MQs:

- nice separation

SIMCA - Interclass Distances

no Treatment ProxCuv@1300-to-1600

StU / MQs:

- nice separation

SIMCA - Interclass Distances

no Treatment ProxCuv@1300-to-1600

MQ / MQs:

- same water different container

SIMCA - Classification

Apparent error rate 0.0371

	Predicted			
Actual	MQ	StU	Ob	MQs
MQ	208	7	0	I
StU	I	253	0	0
Ob	0	5	185	0
MQs	12	0	0	28

50\% new data - Apparent error rate 0.0657

	Predicted			
Actual	MQ	StU	Ob	MQs
MQ	107	3	0	0
StU	1	127	0	0
Ob	0	3	89	0
MQs	15	1	0	4

PLSR (number of consec. scan)

St. Ulrich Water

PLSR (number of consec. scan)

StU@1300-to-1600

Aquagram

Fusion-AllWaters no Treatment, ProxCuv@1300-to-1600

no treatment grouping by C_waterNames (not N corr.)

Fusion-AllWaters no Treatment, ProxCuv@1300-to-1600

Aquagram

Fusion-AllWaters no Treatment, ProxCuv@1300-to-1600

New Aquagram Algorythm

- completely different mathematics,
- but showing high similarity with results of „classic" code
- independent, stable scale
- unit: ${ }^{\circ} \mathrm{C}$

no treatment grouping by C_waterNames (not N corr.)
aucs.dce-diff

Effect of Magnetic Fields on Water

Spectrometer:

- FOSS XDS
- transmittance, pathlength $=1 \mathrm{~mm}$
- $400 \mathrm{~nm}-2500 \mathrm{~nm} ; \Delta=0.5 \mathrm{~nm}$
- $\mathrm{T}=28.6^{\circ} \mathrm{C}$
- 2 different kinds of magnetic treatment
- MilliQ as standard
- Analysis in Ist overtone of $\mathrm{OH} /$ water (1300-1600nm)
- Preliminary Results: as this was an industry-financed experiment, I can not give out hardcopies of even the preliminary results before we published them - I humbly ask for your understanding. Thank you.

Online Aquagram Maker

- upload own data
- compare with available data
- easy to use
- in development -- coming soon...
- http://aquaphotomics.com

Acknowledgements

- Prof. Roumiana Tsenkova \& Zoltan Kovacs
- Zoltan Kovacs
- George Bázár \& Alexandar Slavchev
- everybody at the Biomeasurement Technology Laboratory

Thank You!

